Entry #: _____

Lesson 2.3: Logarithmic Functions & Log Derivatives

The inverse of $f(x) = e^x$ is $f^{-1}(x) = \ln(x)$.

Note: $\log_e(x)$ is usually written $\ln(x)$ and $\log_{10}(x)$ is usually written simply as $\log(x)$.

Graphs of Logarithmic Functions:

If $f(x) = \log_a x$ and $a > 1$, then		
1.	2.	
3.	4.	

Example:

1. Without using a calculator, sketch a graph of $y = |\ln (x - 2)|$. Write an equation for the graph's asymptote.

Change of Form Definition

Examples:

1. Change the following equations from exponential form to log form or vice versa.

a.
$$3^4 = 81$$
 b. $\log(.1) = -1$

- 2. a. Since $e^0 = 1$, $\ln(1) = b$. Since $e^1 = e$, $\ln(e) = c$. $\ln(e^n) = e^{\ln(n)} = e^{\ln(n)}$
- 3. Simplify.

a.
$$\ln(e^{\sqrt{2}}) =$$
 b. $e^{\ln(3x)} =$

b. c.
$$10^{\log(2)} =$$
 d. $\log_2 2^{x^2} =$

Properties of Logarithms

These properties work for any bases, but only if a > 0 and b > 0.

Examples:

- 1. Find using the properties of logarithms.
 - a. $\ln \frac{5}{8} =$ b. $\ln \sqrt[3]{x^2 + 1} =$

2. Condense into a single logarithm. (x > 0 and y > 0)

a.
$$-3\ln(x) + 5\ln(y)$$

b. $\frac{1}{2}\ln(x) + \ln(x+1) - 3\ln(y)$

3. Solve for *x*.

a.
$$y = e^{2x-5} + 6$$

b. $\log_2(x) - \log_2(x-8) = 3$

Change of Base Formula

Examples:

- 1. Use your calculator to find $\log_7 112$ to 3 decimal places.
- 2. a. Find an exact value for x, if $3^{x+2} = 6$.
 - b. Use your calculator to find a decimal value for your answer from Part a.

Differentiating Logarithmic Functions

Examples: Differentiate.

1.
$$y = \ln (5x)$$
 2. $f(t) = \ln (3t^2 - t)$

3.
$$h(x) = x \ln (x)$$

4. Find $\frac{d}{dy} \ln |5 - 2y^3|$

5. Differentiate
$$y = \ln \frac{x\sqrt{2x+1}}{x^2+1}$$
 6. If $y = \log_2(x^2+1)$, find $y'(2)$.

Procedure for Logarithmic Differentiation

We use logarithmic differentiation when we are trying to take a derivative of a function that has a variable both in the exponent and the base.

1.	
2.	
3.	
4.	
5.	

Example:

1. Differentiate $y = (x^2 + 1)^{x-1}$. Express your answer in terms of x.