Entry	#:	
-------	----	--

Lesson 4.3: Logarithmic Functions

Logarithmic Functions

Let a be a positive number with $a \neq 1$. The logarithmic function with base a, denoted by log_a , is defined by:

Logarit	hmic Form	Exponential Form
* Note: In both the Bo	and oth the logarithmic and ex	form the base is the ponential form are equivalent equations.
Properties of Logarithr	ms	
Property	Reason	
Graphing Logarithms		
	is the es (meaning we swap our	_ of an exponential function. This is because domain and range).
Example: Sketch the g	$raph of f(x) = \log_2(x) a$	and $f(x) = 2^x$ on the same set of axes.

х	$\log_2(x)$
$\frac{x}{2^3}$	
2 ²	
2	
1	
2-1	
2-2	
2-3	
2^{-4}	

x	2^x
3	
2	
1	
0	
-1	
-2	
-3	
-4	

What's My

Base?

Whenever you see a logarithm written and the base is ______, the logarithm's base is ______, this is called the **common logarithm**.

$$\log x = \log_{10} x$$

Natural Logarithms

Natural logarithms are logarithms with a base of _____. It is denoted by In.

$$\ln x = \log_e x$$

The natural logarithm function is the inverse of the natural exponential function $(y = e^x)$.

Properties of Natural Logarithms

Reason

Examples: Evaluate the following logarithms.

1.
$$ln(e^8) =$$

$$2. \quad \ln\left(\frac{1}{e^2}\right) =$$

3.
$$\log_5(5) =$$